metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jin Yang, Jian-Fang Ma,* Li Li and Jing-Fu Liu

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: jfma@public.cc.jl.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.032 wR factor = 0.107 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

An aquacadmium(II) complex of 1,10-phenanthroline with a fumarate counter-ion

In the title compound, diaquabis(1,10-phenanthroline- $\kappa^2 N, N'$)cadmium(II) fumarate tetrahydrate, [Cd(phen)₂-(H₂O)₂]L·4H₂O where phen is 1,10-phenanthroline (C₁₂H₈N₂) and L^{2-} is the fumarate anion (C₄H₂O₄²⁻), the cadmium(II) cation is six-coordinated by two water molecules and four N atoms derived from two phen molecules. Each of the two independent L^{2-} anions is located about an inversion centre and they do not coordinate to cadmium(II), acting rather as counter-ions. The water molecules and L^{2-} anions are linked through a complex hydrogen-bonding network to form a three-dimensional structure.

Comment

In recent years, studies on metal carboxylate complexes with aromatic N-donor chelating ligands have attracted special attention owing to their interesting structural and chemical properties (Cariati *et al.*, 1983; Hammershoi *et al.*, 1984; Robl, 1992). In their reported X-ray structures, the anion derived from fumaric acid has been found to be a versatile ligand, so that the coordination mode can be tailored by introducing different neutral ligands to the complex (Young *et al.*, 1998). Here, we present the crystal structure of (I), which is isomorphous with the recently reported zinc(II) structure (Yang *et al.*, 2003).

The structure of (I) reveals that the coordination environment of the cadmium(II) cation is defined by two water molecules and four N atoms, derived from two phen molecules (Fig. 1 and Table 1). Two independent fumarate ions, each disposed about a centre of inversion, provide the charge balance. There are four non-coordinating water molecules in the asymmetric unit.

The carboxylate groups of the L^{2-} anions do not coordinate to the cadmium(II) cation; a similar situation pertains in $[Zn(phen)_2(H_2O)_2]L\cdot 4H_2O$ (Yang *et al.*, 2003). The presence of uncoordinated L^{2-} anions is somewhat unexpected, because the carboxylate group is generally considered to be a better coordinating group than water for cadmium(II). In the related compound, $[Cu_2(C_4H_2O_4)(C_{14}H_{33}N_3)_2](ClO_4)_2$ (CharReceived 16 June 2003 Accepted 30 June 2003 Online 10 July 2003

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

6613 independent reflections 5875 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0739P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

 $\begin{aligned} R_{\text{int}} &= 0.049\\ \theta_{\text{max}} &= 27.4^{\circ}\\ h &= -13 \rightarrow 13\\ k &= -13 \rightarrow 13\\ l &= -17 \rightarrow 17 \end{aligned}$

refinement

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -1.06 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Figure 1

View of the cation, two centrosymmetric anions and two water molecules of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (Sheldrick, 1990).

pin *et al.*, 1987), the carboxylate O atoms coordinate to copper(II) to form a dimer.

In the crystal structure of (I), water molecules and L^{2-} anions are linked through hydrogen bonds to form a complex three-dimensional network. All 12 acidic H atoms participate in hydrogen-bonding interactions (Table 2). The water molecules function as both acceptors and donors, while the carboxylate O atoms are only acceptors, consistent with their anionic status.

Experimental

A mixture of fumaric acid (0.116 g, 1 mmol) and NaOH (0.080 g, 2 mmol) in water (10 ml) was stirred at room temperature, then $CdCl_2$ ·2.5H₂O (0.228 g, 1 mmol) was then added with constant stirring. 1,10-Phenanthroline (0.198 g, 1 mmol) was then added to the resulting suspension. Colourless crystals of (I) were obtained after allowing the solution to stand at room temperature for several days. Yield: 73% (based on Cd). Analysis calculated for $[Cd(phen)_2-(H_2O)_2]L$ ·4H₂O: C 48.35, H 4.32, N 8.06%; found: C 48.51, H 4.44, N 7.91%.

Crystal data

$[Cd(C_{12}H_8N_2)_2(H_2O)_2]$ -	Z = 2
$(C_4H_2O_4)\cdot 4H_2O$	$D_x = 1.576 \text{ Mg m}^{-3}$
$M_r = 694.96$	Mo $K\alpha$ radiation
Triclinic, $P\overline{1}$	Cell parameters from 6009
a = 10.619 (2) Å	reflections
b = 10.630 (2) Å	$\theta = 1.5-27.4^{\circ}$
c = 13.586 (3) Å	$\mu = 0.81 \text{ mm}^{-1}$
$\alpha = 95.19 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 95.56 \ (3)^{\circ}$	Block, colorless
$\gamma = 104.94 \ (3)^{\circ}$	$0.28 \times 0.24 \times 0.17 \text{ mm}$
V = 1464.1 (6) Å ³	

Data collection

Rigaku R-AXIS RAPID diffractometer	
<i>v</i> scans	
Absorption correction: multi-scan	
(ABSCOR; Higashi, 1995)	
$T_{\min} = 0.791, T_{\max} = 0.874$	
4103 measured reflections	
Refinement	
Refinement on F^2	

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.107$ S = 1.096613 reflections 424 parameters

+ parameters

Table 1

Selected geometric parameters (Å, °).

Cd1-OW1	2.252 (2)	Cd1-N2	2.383 (2)
Cd1-OW2	2.259 (2)	Cd1-N3	2.338 (2)
Cd1-N1	2.340 (2)	Cd1-N4	2.365 (2)
	(-)		/->
OW1-Cd1-OW2	82.59 (8)	OW2-Cd1-N4	96.85 (9)
OW1-Cd1-N1	113.70 (8)	N1-Cd1-N2	70.94 (8)
OW1-Cd1-N2	89.55 (8)	N1-Cd1-N3	150.62 (9)
OW1-Cd1-N3	87.18 (9)	N1-Cd1-N4	89.84 (8)
OW1-Cd1-N4	156.45 (8)	N2-Cd1-N3	89.70 (9)
OW2-Cd1-N1	91.67 (8)	N2-Cd1-N4	99.17 (8)
OW2-Cd1-N2	156.18 (9)	N3-Cd1-N4	71.15 (9)
OW2-Cd1-N3	112.20 (9)		

Table 2		
Hydrogen-bonding geometry ((Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
OW2−H21···O4	0.92 (4)	1.80 (2)	2.718 (3)	178 (4)
$OW2-H22\cdots OW4^{i}$	0.92 (4)	1.77 (2)	2.680 (3)	171 (4)
OW1−H12···O2	0.91 (4)	1.71 (2)	2.618 (3)	176 (5)
OW1−H11···O3	0.93 (4)	1.78 (2)	2.700 (3)	171 (4)
OW3−H31···O3 ⁱⁱ	0.92 (4)	1.89 (2)	2.800 (3)	174 (4)
OW3−H32···OW6 ⁱⁱ	0.90 (4)	1.95 (2)	2.832 (4)	168 (4)
$OW4-H42\cdots O4^{iii}$	0.90 (4)	1.85 (2)	2.746 (3)	170 (4)
OW4−H41···OW5	0.90 (4)	1.83 (2)	2.721 (4)	171 (4)
OW5−H51···OW3	0.91(4)	1.96 (2)	2.835 (4)	162 (4)
OW5−H52···O1	0.91 (4)	1.89 (2)	2.762 (4)	162 (4)
OW6−H61···O2	0.90 (4)	1.93 (2)	2.816 (3)	172 (4)
OW6−H62···OW3 ^{iv}	0.90 (4)	2.03 (2)	2.913 (4)	173 (4)

Symmetry codes: (i) x - 1, y - 1, z; (ii) x, 1 + y, z; (iii) 1 - x, 1 - y, 2 - z; (iv) 1 - x, 1 - y, 1 - z.

All H atoms on C atoms were positioned geometrically and refined in the riding model approximation, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms of water molecules were located from a difference Fourier map and were refined with restrained O-H distances of 0.93 (4) Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL*97.

metal-organic papers

This work was supported by the Fok Ying Tung Education Foundation and the Ministry of Education of the People's Republic of China.

References

- Cariati, F., Naldini, L., Panzanelli, A., Demartin, F. & Manassero, M. (1983). Inorg. Chim. Acta, 69, 117-122.
- Charpin, P. P., Chevrier, G., Lanceet, M. & Vigner, D. (1987). Acta Cryst. C43, 216–218.
- Hammershoi, A., Sargeson, A. M. & Steffen, W. L. (1984). J. Am. Chem. Soc. 106, 2819–2837.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Robl, C. (1992). Mater. Res. Bull. 27, 99-107.
- Sheldrick, G. M. (1990). SHELXTL-Plus Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yang, J., Ma, J.-F. & Liu, J.-F. (2003). Acta Cryst. E59, m324-m326.
- Young, D. M., Geiser, U., Schultz, A. J. & Wang, H. H. (1998). J. Am. Chem. Soc. 120, 1331–1332.